
Scaling Data Race Detection for Partitioned
Global Address Space Programs

Abstract
Contemporary and future programming languages for HPC pro-
mote hybrid parallelism and shared memory abstractions using a
global address space. In this programming style, data races occur
easily and are notoriously hard to find. Previous work on data race
detection for shared memory programs reports 10X-100X slow-
downs for non-scientific programs. Previous work on distributed
memory programs instruments only communication operations. In
this paper we present the first complete implementation of data race
detection at scale for UPC programs. Our implementation tracks
local and global memory references in the program and it uses two
techniques to reduce the overhead: 1) hierarchical function and
instruction level sampling; and 2) exploiting the runtime persis-
tence of aliasing and locality specific to Partitioned Global Address
Space applications. The results indicate that both techniques are re-
quired in practice: well optimized instruction sampling introduces
overheads as high as 6500% (65X slowdown), while each technique
in separation is able to reduce it to 1000% (10X slowdown). When
applying the optimizations in conjunction our tool finds all previ-
ously known data races in our benchmark programs with at most
50% overhead. Furthermore, while previous results illustrate the
benefits of function level sampling, our experiences show that this
technique does not work for scientific programs: instruction sam-
pling or a hybrid approach is required.

1. Introduction
Attaining good performance and efficacy on contemporary and
future large scale High Performance Computing systems requires
combining multiple levels of parallelism: intra-node parallelism
is usually exploited using shared memory programming models,
while inter-node parallelism is exploited using message passing
or shared memory abstractions. This is illustrated by the large
body of research in hybrid programming models: OpenMP+MPI,
UPC+MPI, Intel TBB + MPI and OpenMP+UPC.

In this parallelism rich environment, bugs due to non-deterministic
execution and conflicting memory accesses are fairly common and
notoriously hard to detect. Previous work demonstrates the abil-
ity of dynamic program analyses to find concurrency bugs (data
race [39], atomicity violations [27], deadlock [7]) in shared mem-
ory programs. Dynamic program analyses have been also used to
find heisenbugs in distributed memory programs: DAMPI [44] for
MPI wildcard receives and UPC-Thrille [35] for data races in Uni-
fied Parallel C [10].

Data race detectors for shared memory programming [37, 39]
track individual memory references and implement a centralized
analysis to reason about program semantics: their implementa-
tions are heavily optimized to reduce the instrumentation overhead
and are able to function with overhead lower than 10X. Bug find-
ing [35, 44] for distributed memory programming models is made
scalable by using a distributed analysis, but the current approaches
illustrated by DAMPI and UPC-Thrille track only the calls into
communication libraries. Thus, distributed memory tools provide
only limited functionality and need to be extended with tracking
of memory references. Furthermore, while acceptable when testing
programs on workstations, the current overhead of dynamic pro-

gram analyses is hard to stomach at the contemporary HPC con-
currencies of tens of thousands of cores. Large scale analyses face
the additional challenge to provide the lowest achievable overhead
while still providing good coverage. While the adoption criteria for
shared memory tools is “acceptable overhead”, more stringent op-
timality criteria are desired at scale.

In this paper we present and analyze the first complete dy-
namic analysis for distributed memory programs able to track both
memory references and communication calls. We extend the UPC-
Thrille data race detection tool with tracking of individual mem-
ory references and discuss the techniques required to achieve low
overhead for scientific applications running at scale. The results are
validated for implementations of the NAS Parallel Benchmarks [6]
as well as other fine-grained dynamic programming and tree search
applications. Although validated only for UPC benchmarks, we be-
lieve that our findings are widely applicable to any tool for data race
detection in Partitioned Global Address Space languages: Chapel,
Titanium, Co-Array Fortran, X10.

UPC-Thrille, detailed in Section 2.2, implements a dynamic
program analysis running in two phases. In the first phase the pro-
gram is executed with additional instrumentation and data about
memory accesses, communication and task synchronization opera-
tions is gathered and analyzed. For the purposes of this paper we
distinguish three types of overhead: 1) instrumentation overhead
is introduced by the checks to prune the non-interesting data ac-
cesses; 2) computation overhead is introduced by the operations on
internal data structures to manage the interesting accesses; and 3)
communication overhead introduced by the exchange of conflicting
accesses between tasks.

The most widely used technique to reduce overhead is sam-
pling [3, 4, 19, 28, 35, 44] of the program execution. Tools for
shared memory use instruction level sampling while the distributed
memory tools [35, 44] implement its equivalent by sampling the
communication calls. For shared memory, Marino et al [28] re-
cently introduced LiteRace which coarsens the granularity of the
sampling at function boundaries: functions are compiled in two ver-
sions, un- and instrumented, each version being selected at runtime
using heuristics. LiteRace showed better scalability and coverage
than instruction level sampling when applied on several Microsoft
programs, as well as Apache and Firefox.

We have experimented with both instruction level sampling and
function level sampling. The results presented in Section 6 indi-
cate that instruction level sampling performs better than function
level sampling for scientific programs. Instruction level sampling
adds runtime overhead as high as 65X while many runs using func-
tion level sampling did not terminate, even when instrumenting
only the first execution of a function. This result contradicts the
trends reported for LiteRace and it is caused by a combination of
two factors: 1) determining the locality of a reference is expen-
sive in PGAS programs; and 2) scientific programs have long run-
ning loops, with billions of memory accesses per invocation in our
benchmarks. The results also indicate that the instrumentation over-
head dominates the computation and communication overhead of
the analysis.

We propose a combination of techniques to minimize the tool
overhead. In Section 4.1 we describe how to use program semantic

1 2012/8/17



information such as aliasing to further reduce the instrumentation
overhead. In Section 4.2 we propose a hierarchical sampling ap-
proach where instrumentation is dynamically controlled both at the
function level and at the instruction level. Hierarchical sampling re-
duces all three type of overhead: instrumentation, computation and
communication. Applying these techniques in isolation is able to
reduce the maximum tool overhead from 6500% with instruction
sampling to roughly 1000%. Using them in combination, we were
able to reduce the maximum overhead from 1000% to only 50%
while finding the same races.

2. Background
2.1 Unified Parallel C
UPC is a parallel extension of the ISO C programming lan-
guage for high performance computing. UPC uses the Single-
Program-Multiple-Data (SPMD) programming model and pro-
vides a Partitioned Global Address Space: each task has access
to a private address space and to a global shared address space.
The language extends the C type system with the qualifier of
pointer-to-shared to denote accesses to the global address
space. Pointers-to-shared can be casted to proper C pointers,
but not vice-versa. This is widely used in practice for performance
reasons and for calling into libraries such as Intel MKL. In ad-
dition, the language provides synchronization primitives (lock,
barrier), bulk memory transfers (memput, memget), as well as
a memory consistency [24, 48] model.

Together with Chapel, X10, Co-Array Fortran and Titanium,
UPC belongs to the family of Partitioned Global Address Space
languages. These PGAS languages distinguish between local and
global references and provide support for logical data layouts, such
as block-cyclic array distribution. As a result, they implement com-
plicated memory management and a reference to a global object
is orders of magnitude slower than a load/store instruction due to
complex addressing rules.

2.2 Finding Data Races with UPC-Thrille
A data race occurs in parallel programs when two threads access
the same memory location with no ordering constraints between
them, and at least one of the accesses is a write [1, 33].

Before this work, UPC-Thrille was able to find only data races
between accesses performed using variables with the pointer-to-shared
data type (e.g. shared int *) and communication calls (e.g.
memget). It implements an active testing [21] methodology which
works in two phases:

• A predictive analysis phase which uses a distributed lockset-
based algorithm [35, 39] to identify potential data races. As
only references with a pointer-to-shared data type are
tracked, the implementation amounts to instrumenting calls into
a communication runtime. The results reported show that UPC-
Thrille is able to find bugs with good scalability and overhead
lower than 15%.

• A confirmation phase, where the program is re-executed under
a controlled schedule that attempts to make the potential races
manifest. As the first phase reports a small number of candi-
dates, this phase is often skipped in practice.

Well optimized UPC programs usually cast pointers-to-shared
(e.g. shared int *) to C proper pointers (e.g. int*) and the re-
leased UPC-Thrille misses a large class of data races introduced by
memory aliases. Furthermore, the presence on non-blocking com-
munication operations [8] introduces another class of data races.
As non-blocking communication is a “background” asynchronous
activity that can be overlapped with computation, memory accesses
within a task can race with the communication operations initiated

by the same task. MPI programs face a similar problem when us-
ing the MPI Isend/IRecv non-blocking communication primitives.
A complete solution for finding both “traditional” and races in-
troduced by non-blocking communication needs to track all the
memory references, including those using C pointers, as well as
communication calls.

3. The Overhead of Data Race Detection
Runtime overhead due to instrumentation is recognized as a prob-
lem that dynamic race detectors have to address. Commercial tools
for C programs such as the Intel Thread Checker or the Sun Thread
Analyzer, usually provide full coverage at the expense of 600X ex-
ecution slowdown [41] on scientific OpenMP programs with small
memory footprints. Average overheads on other scientific programs
for the Intel Thread Checker have been reported [38] around 200X
and as high as 485X.

Sampling techniques have been introduced by Arnold and Ry-
der [3] and later adopted in other bug finding tools [4, 28] for par-
allel programs. The efficacy of these techniques is determined by
the granularity of the instrumented code region and the sampling
strategy. Tools [4] for finding bugs in programs running on man-
aged runtimes (e.g. Java) tend to use instruction level sampling;
the additional instrumentation overhead is not perceived as unac-
ceptable since the runtime already manages object metadata and
access. These systems usually observe up to 3X slowdowns for
non-scientific applications and data is not available for HPC appli-
cations. The equivalent of instruction sampling is performed in dis-
tributed memory tools such as DAMPI [44] and UPC-Thrille [35]
which track communication calls.

Recently, Marino et al [28] proposed a technique to coarsen the
sampling control from instruction level to function level. They use
a compiler to generate instrumented and un-instrumented versions
of functions and select the appropriate copy at runtime. The in-
strumented version of a function monitors every memory reference
during its execution. Their LiteRace tool introduces up to 3X over-
head while providing good coverage on non-scientific programs; it
has not been evaluated on scientific programs. In the rest of this
paper we refer to this technique as function sampling. One reason
that function sampling outperforms instruction sampling is that it
amortizes better the cost of tracking memory references: function
sampling executes one branch/decision per function call while in-
struction sampling executes one branch/decision per instruction.

Several sampling strategies have been proposed and evaluated
for non-scientific programs. Random sampling has been shown to
provide poor coverage. SWAT [19] detects memory leaks and uses
an approach where the execution of code segments is sampled at
a rate inversely proportional to their execution frequency. LiteRace
uses a bursty sampler, where the execution of a function is sampled
initially at a 100% rate and the sample rate is progressively reduced
until it reaches a lower bound. Both approaches try to give priority
to regions of code rarely executed and give priority to the first
execution of any code region.

The implementation of UPC-Thrille described in [35] uses “in-
struction” level instrumentation with a bursty sampling similar
to LiteRace. UPC-Thrille instruments every memory access per-
formed using pointer-to-shared, either at word granularity or
using bulk memget/memput memory operations.

In order to provide a complete data race detection solution we
have modified UPC-Thrille and the Berkeley UPC compiler to track
all memory references, including all references through C proper
pointers. We provide a well optimized implementation of instruc-
tion sampling that makes extensive use of C macro-definitions to
eliminate function call overheads for the instrumentation code. Ev-
ery memory reference is examined using a bursty sampling strat-

2 2012/8/17



egy. We have also implemented function sampling with the same
bursty strategy.

For any sampled memory reference, the implementation checks
whether the address resides within a thread’s private address space
or within the global address space. This check requires integration
with the UPC runtime memory management module and it is an
expensive operation, common to PGAS languages. References to
the private address space are ignored as they cannot race. Global
references are inserted into the UPC-Thrille internal data structures
and further checked against other references.

We distinguish three types of overhead: 1) instrumentation over-
head is introduced by the checks to prune the non-interesting data
accesses; 2) computation overhead is introduced by the operations
on internal data structures to manage the interesting accesses; and
3) communication overhead introduced by the exchange of con-
flicting accesses between tasks. Thus, private references contribute
only to instrumentation overhead while global references also con-
tribute to the computation and communication overhead.

We have performed experiments with instruction sampling us-
ing the default settings reported in [35] and with multiple function
sampling strategies. For brevity we do not present detailed results.
Our results indicate that for the NAS Parallel Benchmarks function
sampling is not a scalable strategy. For most benchmarks class B
and up, experiments when instrumenting only the first invocation
of a function did not terminate: some exhausted the available mem-
ory while some were manually terminated after observing 1000X
slowdown. Results for instruction level sampling indicate that this
approach is able to find races with up to 65X slowdown. Detailed
results are presented in Section 6.

This behavior contradicts the intuition that function sampling
scales better than instruction sampling. The performance reversal
is caused by the too coarse granularity of control over instrumen-
tation: as loops within these benchmarks execute billions of refer-
ences, function sampling tracks billions of references.

4. Techniques to Reduce Overhead
As function level sampling does not work and instruction sampling
introduces a 65X overhead that is unacceptable when running at
scale, our implementation uses two techniques to reduce the num-
ber of tracked memory references without sacrificing the precision
of the analysis.

The first optimization reduces the overhead of instrumentation
by exploiting the insight that aliases are persistent in PGAS pro-
grams: once one is created it will point in the same region (private
or global) for a long period of time. Using this we can eliminate
the overhead introduced by looking up the physical memory layout
inside the language runtime.

The second optimization reduces overhead using hierarchical
sampling. By combining function and instruction sampling we
amortize the cost of instrumentation while retaining fine grained
control over the number of events sampled.

4.1 Exploiting the Persistence of Locality
PGAS languages, such as UPC, Titanium, CAF, Chapel and X10,
provide the abstraction of a shared memory address space. Data
residing in this space is accessible through references to variables
that have a particular type, e.g. pointer-to-shared” type in UPC
or “global” in Titanium1.

The memory management inside any PGAS language runtime
is complex due to the need to provide globally addressable memory
and to support data layouts, e.g. block cyclic layouts. Thus, a
reference to a global object is orders of magnitude [20] more

1 Actually, in Titanium any reference is global by default and the language
provides local qualifiers.

expensive than a local reference, through a C pointer in the UPC
case. Application developers aggressively cast global references to
local and compiler optimizations [22, 25, 26] have been explored
to “privatize” global references.

For every local memory reference, the data race detection code
needs to perform the inverse up-cast operation and check whether
the address is globally visible. This operation is also orders of
magnitude more expensive than a regular memory load/store.

In our implementation we limit the number of up-casts per-
formed at runtime using the intuition that aliases/locality are persis-
tent: during the program execution a reference will access only the
private space or only the global space, independent of its static data
type. This assumption allows the analysis to determine at runtime
the “locality” of any reference only once and cache the result for
the rest of the execution. In our implementation, we add a shadow
variable to cache the locality of every memory reference expres-
sion.

The persistence of locality assumption is valid in all of our test
programs and it does not decrease the precision of the analysis. The
heuristic may lead to false negatives (miss real data races) when the
underlying assumption is not valid for the program. However, the
technique can be trivially generalized for programs with a more dy-
namic behavior. As casts in PGAS languages are complicated and
are implemented as runtime “calls”, any casting call can be modi-
fied to invalidate the locality information cached. The performance
of this approach is determined by the ratio of casts to memory ref-
erences performed by the program at runtime. The additional over-
head for realistic programs is likely to be negligible in practice.

4.2 Hierarchical Sampling
For every memory reference there are two sources of runtime over-
head. Instrumentation overhead is introduced to decide whether the
reference should be recorded and computation overhead is intro-
duced when recording the reference in the tool internal data struc-
tures. By reducing the instruction sampling rate one can clearly
reduce overhead, but at the expense of program coverage. To pro-
vide both low overhead and good coverage we propose a hierar-
chical sampling approach which combines the fine grained control
of instruction sampling with the overhead amortization provided
by function sampling. By using a good hierarchical sampling strat-
egy, we can reduce the instrumentation overhead while retaining
the ability to sample from a diverse context with less redundancy.
Using the concept of code regions, we formally define instrumen-
tation and hierarchical sampling.

Definition 1 (Code regions). We inductively define code regions.
By definition, the smallest unit of a code region is a memory refer-
ence (read or write). A code region is a reference or a sequence of
one or more code regions. The entire program is the largest code
region. Each code region R has a label, denoted as #R.

Functions, loop bodies, basic blocks etc. are examples of code
regions. We assume structured code, i.e. that all code regions are
properly nested.

Definition 2 (Region stack). During program execution, a region
stack RS is maintained. Similar to a call stack, when a region is
entered, the label of the region #R is pushed to RS. When exiting
a region, the last label is popped from the stack. At the beginning
of a program execution, RS is initially empty.

Definition 3 (Instrumentation). Instrumentation is a transforma-
tion of a code region R→ Rinst.

If R is a memory reference (base case)

Rinst =
if check-reference(#R :: RS) then

log(#R)
R

3 2012/8/17



Else, if R is a sequence of regions [R1, R2, . . . , Rn],

Rinst =

if check-region(#R :: RS) then
RS = #R :: RS;
[Rinst

1 , Rinst
2 , . . . , Rinst

n ];
RS = tail(RS)

else
[R1, R2, . . . , Rn]

By specializing the check-reference and check-region and choos-
ing the region granularity, we can implement multiple sampling
algorithms. For example, instruction sampling with an exponential
backoff (strategy I in the experiments presented in Section 6), is
implemented as the following functions. The map p : label → R
contains the (dynamic) sampling probabilities of regions.

∀#R ∈ Statements. p(#R) = 1.0

check-reference(#R :: RS) = if rand() < p(#R) then
p(#R) ∗ = BACKOFF FACTOR;
return true

else
return false

check-region(x) = true

Function sampling as introduced by the LiteRace [28] imple-
mentation is defined as follows. The region is a whole function and
the sample-strategy function depends on the strategy of sampling,
such as a fixed probability, random or an adaptive strategy.

check-reference(x) = true

check-region#R :: RS) = sample-strategy(#R)

Intuitively, the check-reference function decides what events
should be logged at runtime, while the check-region function pro-
vides control over the granularity of these decisions. We propose a
hierarchical sampling strategy that combines instruction sampling
with function sampling. The combination of hierarchical sampling
with the aliasing runtime heuristic is referred to as HA and de-
scribed as:

∀#R ∈ Statements ∪ Functions. p(#R) = 1.0

check-reference(#R :: RS) = if p > 0 ∧ rand() < p(#R)
then

if is-local-access(R) then
p(#R) = 0 ; // alias heuristic
return false;

else
p(#R) ∗ = STMT BACKOFF FACTOR;
return true;

else
return false

check-region(#R :: RS) = if p > 0 ∧ rand() < p(#R) then
p(#R) ∗ = FUNC BACKOFF FACTOR;
return true

else
return false

This implementation uses exponential backoff at both individual
reference and function granularity.

5. Benchmarks
We evaluate UPC benchmarks using fine-grained and bulk com-
munication. For implementations using bulk communication prim-
itives we use the NAS Parallel Benchmarks (NPB) [6, 31, 32], re-
leases 2.3, 2.4, and 3.3. We have performed experiments with the
problem classes A, B and C and D; overall the memory footprint
of the workload varies from tens of MBs to tens of GBs. Asanović
et al [5] examined six different promising domains for commercial
parallel applications and report that a surprisingly large fraction of
them use methods encountered in the scientific domain. In partic-
ular, all methods used in the NAS benchmarks (multigrid, sparse-
matrix operations, sorting, Fast Fourier Transformation, dense lin-
ear algebra) appear in at least one commercial domain. Thus, be-
side their HPC relevance, these benchmarks are of interest to other
communities.

The fine-grained benchmarks reflect the type of communi-
cation/synchronization that is present in larger applications dur-
ing data structure initializations, dynamic load balancing, or re-
mote event signaling. The guppie benchmark performs random
read/modify/write accesses to a large distributed array, a common
operation in parallel hash table construction, graph algorithms and
data mining. The amount of work is static and evenly distributed
among tasks at execution time. The psearch benchmark performs
parallel unbalanced tree search [34]. The benchmark is designed to
be used as an evaluation tool for dynamic load balancing strategies.

The selected programs provide a good sample of various pro-
gramming and software engineering styles, dynamic application
behavior and scalability characteristics. The NAS benchmarks con-
tain many function calls and have a structure common to any large
application. The fine-grained benchmarks contain few or no user
defined function calls, a structure common to many scientific li-
braries and their unit testing. In the NAS benchmarks, the ratio of
local memory accesses to communication calls performed at run-
time is large (O(105) or above) , while in the fine grained bench-
marks they are roughly equal. The NAS benchmarks implement
iterative methods, while the code in the fine-grained benchmarks
represents a “direct” solve executed only once. NAS FT exhibits a
race between the initialization code and the subsequent computa-
tion: initialization is executed only once. guppie performs random
updates to a global table and it exhibits two races: read-write and
write-write. psearch implements a work stealing strategy that ex-
hibits random data races. Due to the randomness of the access pat-
tern, these benchmarks require the tool to provide good program
coverage.

The same workload has been evaluated in [35] where the au-
thors describe a larger set of races than that used in this section
for illustrative purposes. Our extended implementation finds all
these and, in addition, uncovers several other races. For a summary
please see Table 1. For example, we detect a previously unknown
race in NAS CG introduced by the presence of aliasing: memory is
initialized using “local” pointers and distributed without synchro-
nization to other tasks using global pointers. In NAS BT and SP we
uncover seven and nine additional races, respectively. These races
are real and confirmed by the tool; they occur when executing cus-
tom synchronization code:
signal (v = 1); ‖wait(while(v == 0); );.

The 44 new data races found in NAS LU are caused partially
by custom synchronization code and partially by data references
separated by custom synchronization code. We are still classifying
these races and we will provide a detailed breakdown in the final
version of the paper. Note that identifying races in the presence of
custom synchronization code is a common limitation of data race
detection tools.

4 2012/8/17



6. Evaluation
Our implementation extends UPC-Thrille as contained in the
Berkeley UPC release 2.14.2 with load/store tracking, hierarchi-
cal sampling and the runtime alias disambiguation heuristic.

The experimental results are obtained on a Cray XE6 system
composed of nodes containing two twelve core AMD MagnyCours
2.1 GHz processors. The system has two nodes attached to a Gem-
ini network interface card, forming an overall 3-D torus network
with 6,384 nodes. The network is providing a bandwidth of 9.375
GBytes/sec per direction in 10 directions. The maximum injection
bandwidth per node is 20GB/s.

We evaluate the performance of our data race detection tool on
10 UPC programs written in different programming styles. For each
benchmark we evaluate the overhead of several configurations of
the tool. Instruction sampling is denoted by I and for this config-
uration we report results with the default setting of 0.9 instruction
backoff factor, reported in [35]. Using this setting, the authors re-
port overheads lower than 15% when running at scale. Function
sampling is denoted by F, while hierarchical function and instruc-
tion sampling is denoted by H. For hierarchical sampling, instruc-
tions are sampled with the default values for I, while the numbers
in the title denote the function backoff factor. Thus, H1 is identical
to I (always samples functions), while with H0 we sample only the
first invocation of any function. At the mid-point H.5 the probabil-
ity of sampling a function invocation decays from 1 by 0.5 each
time the function is sampled; for long running programs the sam-
pling probability converges to 0. The letter A in the configuration
name denotes applying the aliasing heuristic to that particular sam-
pling method.

6.1 Comparison of Sampling Techniques
We illustrate the differences between the different tool configura-
tions using the CG benchmark. These trends are representative for
the whole suite of benchmarks we examined. For reference, the
original UPC-Thrille tool adds 8% runtime overhead when instru-
menting only communication calls (labeled as NL in the graphs
for No-Local). Our implementation finds one additional race in the
implementation of this benchmark when compared to the original
UPC-Thrille.

Figure 1 presents the tool performance when applied to the
CG benchmark classes A and D running on 16 and 2048 cores
respectively. The benchmark implements an iterative method and
Class A solves a problem with a small memory footprint (MBs) in
few iterations, while class D solves a large (GBs) problem. Previous
other shared memory data race detectors [16, 28, 37, 39] have been
scaled at most up to 16 cores and on applications using small data
sets. LiteRace is validated on a four core system, while the tool
presented by Raman et al [37] has been scaled up to 16 cores.

Instruction level sampling I of all memory references adds a
3700% overhead to the CG benchmark execution. This is obtained
using the default sampling frequency recommended by the tool au-
thors to find races when instrumenting only communication calls.
The overhead can be reduced by decreasing the sampling fre-
quency, albeit at the expense of code coverage.

Function level sampling F.5 introduces a 3000% overhead for
class A, lower than the 3700% overhead of I. A comparison of the
overhead breakdown for F and I illustrates the fundamental differ-
ences between the two methods. I introduces 3600% instrumenta-
tion overhead, while F.5 adds only 100% instrumentation overhead.
This large difference validates the common intuition that function
level sampling amortizes better the cost of deciding what references
to track. On the other hand, F.5 exhibits a large 2900% computa-
tion overhead to record and reason about the memory references
that are actually tracked. The computation overhead for I is very
small at 2%. This behavior is explained by the temporal distribution

of tracked memory accesses during the program execution. UPC-
Thrille uses a combination of lockset based and happens-before
analysis that requires tracking all memory references between two
barrier statements. Function level sampling exhibits a clustered
behavior, where many memory references are tracked for a short
period of time. Instruction sampling spreads the tracking of mem-
ory references more evenly over the program execution. Thus, the
behavior of function sampling is determined by the scalability of
the tool internal data structures, while the behavior of instruction
sampling is determined the speed of “classifying” a memory ac-
cess. We discuss the scalability of data structures in Section 6.2.

Hierarchical sampling H.5 provides better performance than
both function and instruction sampling and exhibits 2650% over-
head. Most of this overhead is instrumentation overhead.

Adding the aliasing heuristics to any of the tool methods greatly
improves performance. The overhead of instruction sampling is re-
duced from 3700% to 205% with IA. The overhead of hierarchical
sampling is reduced from 2650% with H.5 to 199% with HA.5 and
from 394% with H0 to 17% with HA0. The lowest overhead of data
race detection for the CG class A benchmark running on 16 cores
is obtained by the HA approach.

Similar trends are observable when scaling the problem and
running class D on 2048 cores. For this particular configuration, the
F and FA methods do not terminate due to out of memory errors or
excessive slowdown. I exhibits a 359% slowdown, while all hybrid
methods IA and HA exhibit less than 15% slowdown.

6.2 Implementation Overheads
Previous work on data race detection focuses on word-level mem-
ory accesses and require only keeping track of conflicting ad-
dresses. These tools usually use internally hash table data struc-
tures. For scientific programs with bulk communication operations
(PGAS or MPI), data races on full memory ranges can occur during
execution. UPC-Thrille uses an efficient Interval Skiplist [18] data
structure to represent memory ranges and the authors demonstrate
good performance when sampling communication operations.

As the performance of function sampling is clearly hampered by
the internal data structure overhead, we evaluate the scalability us-
ing micro-benchmarks for the insertion and search operations. The
time complexity of these algorithms is dependent on the number
of elements in the data structure and the distribution of the inter-
vals. We evaluate performance across a range of list sizes and in-
terval distributions: sequential, reverse sequential, strided and uni-
form random. Sequential streams are often encountered in code that
performs data structure initialization, and are present in all of our
benchmarks. They are also the holy-grail of cache optimizations.
Strided accesses occur in the Fast Fourier Transform code NAS
FT, while random accesses of the form a[b[i]] appear in sparse
methods NAS CG and sorting NAS IS, as well as guppie. For a real-
world perspective, we also measure the average number of memory
intervals that are recorded in our benchmarks.

Figures 2 and 3 present the measured performance on one core
of the Cray XE6 system. For a uniform random distribution of
20,000 ranges, the average insert time is 12 µs and the average
search time is 1.3 µs. For a more regular distribution of ranges such
as a sequential one (e.g. [0, 10), [10, 20), [20, 30), . . . ), the insertion
and search times were higher at 114µs and 2.4µs, respectively. This
is a weakness of the Interval Skiplist which relies on randomness
of data for balancing link levels. The effect can be offset by adding
some irregularity, such as inserting a mix of two different sequential
streams. In the application benchmark, the memory access stream
does have irregularity, and as illustrated by the results for MG
inserts are on average 45µs and searches 0.54µs.

When using instruction sampling for the application bench-
marks, the Interval Skiplists never grew too large. They remained

5 2012/8/17



Overhead
Bench LoC Runtime(s) #Races NL HA.5 IA FA0 I
guppie 271 19.070 2 + 0 54.9% 54.2% 53.7% DNF 74.9%
psearch 803 0.697 3 + 1 2.48% 10.8% 666% 8.01% 6490%
BT 9698 189.48 8 + 7 0.574% 1.16% 77.6% DNF -
CG 1654 39.573 2 + 1 1.09% 27.6% 57.6% DNF 2579%
EP 678 54.453 0 -0.618% 0.805% 2.09% 4.74% 111%
FT 2289 62.663 2 + 0 0.601% 30.1% 121% DNF 2744%
IS 1R36 5.130 0 0.376% 119% 159% DNF 1201%
LU 6348 155.997 0 + 44 -0.425% - 75.7% DNF -
MG 2229 18.687 2 + 4 0.336% 176% 632% DNF 2020%
SP 5740 247.937 8 + 9 0.160% 0.861% 29.1% DNF -

Table 1. Statistics for the NAS Parallel Benchmarks class C, guppie and psearch running on 16 cores. We report the races found as A + B, where A represents
the number of races detected by the original UPC-Thrille tool and B represents the additional number of races detected with our extensions.

0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

NL	   HA0	   HA.5	   IA	   H0	   F0	   H.5	   F.5	   I	  

Overhead	  for	  CG	  class	  A	  16	  cores	  

instrument	  

comm	  

comp	  

program	  

0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

3	  

3.5	  

4	  

NL	   HA0	   HA.5	   IA	   I	  

Overhead	  for	  CG	  class	  D	  2K	  cores	  

instrument	  

comm	  

comp	  

program	  

Figure 1. Breakdown of data race detection overhead for the CG class A benchmark running on 16 cores and class D running on 2048 cores. The F and
FA configurations did not finish for the class D experiment. At the mid-point HA.5 the probability of sampling a function invocation decays to from 1 to 0.5,
where every other invocation is instrumented.

at under 1000 unique ranges, thus the insert and search times of the
Interval Skiplist do not contribute largely to the overhead. On the
other hand, when using function sampling the data structures grew
above 106 entries, at which point we stopped the execution due to
the very large overheads already accumulated.

Instruction sampling pays a higher cost for classifying a mem-
ory reference but it naturally throttles the number of references
recorded at any time. Function sampling performs a fast classifi-
cation while having to record a large number of references. Ref-
erence classification has a constant overhead independent of the
number of references already recorded, while recording overhead
scales with the number of references. This difference explains why
function sampling scales worse than instruction sampling for scien-
tific programs. For reference, when running on the Cray XE6, the
average instrumentation overhead per reference is 1ns, the average
memory classification is 45ns, the average computation overhead
per reference is 500ns while the average communication overhead
per reference is 60µs.

6.3 Scalability Aspects of Data Race Detection
The trends discussed for the CG benchmark are illustrative of the
behavior of data race detection for all the other applications in our
workload.

Function sampling (F or FA) is faster than instruction sampling
(I or IA, respectively) for problems using small datasets, such as
class A of the NAS Parallel Benchmarks. When increasing the
data set size to B, C and D, function sampling in any flavor does
not terminate, while the highest overhead observed for instruction
sampling is 6500%. From all benchmarks considered, the only

exception happens for psearch where F is roughly twice as fast
than I. This tree search benchmark performs a constant and small
amount of work per function, independent of the problem size: this
is a common characteristic to many commercial applications. The
performance reversal observed for most benchmarks contradicts
the common intuition that function sampling performs better than
instruction sampling.

Hierarchical sampling H performs better than both instruction
sampling I and function sampling. While it does reduce overhead,
we observe slowdowns as high as 2000% which is still unaccept-
able when running at scale.

Applying the aliasing heuristic reduces the overhead of data
race detection for both instruction level and hierarchical sampling.
The maximum slowdown observed by IA is 1000% while the
maximum slowdown for I is 6500%. Similar results are observed
for HA when compared to H.

Figure 4 shows the performance of our approach when perform-
ing strong scaling experiments for the classes C and D of the NAS
Parallel Benchmarks. For all experiments, the lowest overhead is
introduced by the HA configuration and we are able to find all the
races with less than 50% runtime overhead when running up to
2048 cores. In the case of the NAS Parallel Benchmarks class C
on 16 cores, the weighted average overhead for all the benchmarks
with HA.5 was 11.9%.

Overall, instrumentation overhead contributes the most to the
slowdown caused by data race detection. The computation over-
head in the scalable versions of IA and HA is small. At large scale
the communication overhead is also small due to the techniques
presented in [35].

6 2012/8/17



0	  

20	  

40	  

60	  

80	  

100	  

120	  

140	  

5000	   10000	   15000	   20000	  

us
ec
	  p
er
	  o
pe

rt
ai
on

	  

Number	  of	  ranges	  

Inserts	  

Uniform	  

Sequen4al	  

Reverse	  Sequen4al	  

Strided	  

2	  Seq.	  streams	  

mg	  

Figure 2. Average time for the insert operation in Interval Skiplist.

0	  
0.5	  
1	  

1.5	  
2	  

2.5	  
3	  

3.5	  
4	  

4.5	  

5000	   10000	   15000	   20000	  

us
ec
	  p
er
	  o
pe

rt
ai
on

	  

Number	  of	  ranges	  

Searches	  

Uniform	  

Sequen4al	  

Reverse	  Sequen4al	  

Strided	  

Uniform	  -‐	  Sequen4al	  

mg	  

Figure 3. Average time for the search operation in Interval Skiplist.

7. Discussion
Sampling techniques have been shown to be effective when scal-
ing data race detection analyses. The state-of-the-art technique ap-
plied to commercial programs is function level sampling, which
our results clearly demonstrate that it is not applicable to scientific
programs. Function sampling performs well when the amount of
work per function is constant and scaling the data-set increases the
number of function calls. Instruction or hierarchical sampling are
required for scientific programs as scaling the data set increases the
amount of work per function, while performing the same number of
invocations. The results also indicate that a combination of hierar-
chical sampling and alias heuristics is required to attain acceptable
overhead for data race detection on scientific programs running at
scale. Any stand-alone technique does not provide a low enough
overhead.

We believe that our techniques and findings are widely applica-
ble to other languages or programming models. The alias heuristic
is applicable to any PGAS language since they provide a global
address space and performance and software engineering concerns
require programmers to aggressively identify references that are lo-
cal to a given “task”. We believe that for any PGAS language the
heuristic can implemented with runtime techniques since a global
address contains object metadata and casting requires runtime calls.
Runtime alias heuristics are not possible for MPI+OpenMP pro-
grams and they may need to be replaced by compile time analysis.

Hierarchical sampling is a generic technique orthogonal to the
language, programming model employed in the application or the
data race detection algorithm. It is clearly required for SPMD par-
allelism (UPC, CAF, MPI) or OpenMP parallel loops, where work
per function scales with the problem size. When using structured
parallelism as present in Habanero-C, X10 or OpenMP tasking,
some applications may perform a constant amount of work per
function and the overall behavior approximates commercial appli-
cations or that of our psearch benchmark. In this case, hierarchical
sampling performs at least as well as function sampling. The ben-
efits of hierarchical sampling are also orthogonal to the choice of
data race detection algorithm: lockset based of happens-before.

There are several interesting open questions related to hierar-
chical and function sampling. Our hierarchical approach consid-
ers two granularities: function and instruction. In order to achieve
lower overhead or to improve program coverage, one can imagine
decreasing the overhead from function level to some intermediate
program block level. Because of the presence of deep loop nests in
scientific programs we believe that sampling as these two granular-
ities is sufficient. A theoretical question remains whether function
sampling can be made more scalable. Scalability can be improved
by two approaches: i) using data structures with better scalability

characteristics than Interval Skiplist; and 2) using better formalisms
to reduce the number of memory references that the analysis has to
track. The results obtained from our workload do not yet provide
enough performance motivation to explore these questions.

For our future work we plan to extend the data race detection
implementation to provide maximum coverage on a time budget:
our goal is find the maximum number of data races with no more
than a guaranteed application slowdown. Our preliminary experi-
ences indicate that we are likely to be able to guarantee no more
than 2X slowdown. Toward controlling time, the scalability analy-
sis of the internal data structures has already yielded valuable in-
sights which allows us to derive space/state bounds. Toward im-
proving coverage, we plan to use and perhaps augment the con-
cept of region stacks introduced in the formalism presented in Sec-
tion 4.2. We plan to experiment with several other strategies besides
exponential backoff at reference and function level: i) proportional
sampling per unique region stack; ii) k-region context sampling;
and iii) proportional sampling at functions and exponential backoff
at statements.

8. Other Related Work
Data race detection tools can be broadly classified as using static or
dynamic techniques. Static techniques [9, 15, 30, 36] are scalable
and complete, i.e. find all the races in the program. On the other
hand, they report a very large number of false positives which
need to be filtered by users and can handle only limited types of
synchronization primitives such as locks or barriers.

Dynamic techniques for finding concurrency bugs can be classi-
fied into two classes: predictive techniques and precise techniques
Predictive dynamic techniques [11, 39, 46] could predict concur-
rency bugs that did not happen in a concurrent execution; how-
ever, such techniques still report false warnings. UPC-Thrille im-
plements a predictive dynamic technique, followed by automatic
filtering of false positives. Precise dynamic techniques, such as
happens-before race detection [2, 12, 14, 16, 29] and atomicity
monitoring [17, 27, 47], are capable of detecting concurrency bugs
that actually happen in an execution. Therefore, these techniques
are precise, but they cannot give good coverage as predictive dy-
namic techniques.

Dynamic techniques have to address the challenge of high run-
time overhead. Sampling approaches to reduce instrumentation
overhead have been discussed throughout this paper. Techniques to
reduce the computation overhead have been explored as well. Choi
et al [11] discuss static analysis techniques to reduce the over-
head of data race detection for Java programs. As alias and pointer
analysis for C based programs is notoriously conservative, these
techniques need to be supplemented by the runtime techniques

7 2012/8/17



0.98	  

1.08	  

1.18	  

1.28	  

1.38	  

1.48	  

1.58	  

1.68	  

1.78	  

16	   32	   64	   128	   256	   512	   1024	   2048	  

Ru
n$

m
e	  
no

rm
al
iz
ed

	  to
	  "
em

pt
y"
	  ru

n	  

cores	  

Scalability	  of	  analysis	  on	  BT	  

NL-‐D	  

HA0-‐D	  

HA.5-‐D	  

IA-‐D	  

NL-‐C	  

HA0-‐C	  

HA.5-‐C	  

IA-‐C	   1	  

1.1	  

1.2	  

1.3	  

1.4	  

1.5	  

1.6	  

1.7	  

16	   32	   64	   128	   256	   512	   1024	   2048	  

Ru
n$

m
e	  
no

rm
al
iz
ed

	  to
	  "
em

pt
y"
	  ru

n	  

cores	  

Scalability	  of	  analysis	  on	  CG	  

NL-‐D	  

HA0-‐D	  

HA.5-‐D	  

HA1-‐D	  

IA-‐D	  

NL-‐C	  

HA0-‐C	  

HA.5-‐C	  

HA1-‐C	  

IA-‐C	  

0.98	  

1	  

1.02	  

1.04	  

1.06	  

1.08	  

1.1	  

1.12	  

1.14	  

1.16	  

1.18	  

16	   32	   64	   128	   256	   512	   1024	   2048	  

Ru
n$

m
e	  
no

rm
al
iz
ed

	  to
	  "
em

pt
y"
	  ru

n	  

cores	  

Scalability	  of	  analysis	  on	  EP	  

NL-‐D	  

HA0-‐D	  

HA.5-‐D	  

IA-‐D	  

NL-‐C	  

HA0-‐C	  

HA.5-‐C	  

IA-‐C	   1	  

1.2	  

1.4	  

1.6	  

1.8	  

2	  

2.2	  

2.4	  

16	   32	   64	   128	   256	   512	  

Ru
n$

m
e	  
no

rm
al
iz
ed

	  to
	  "
em

pt
y"
	  ru

n	  

cores	  

Scalability	  of	  analysis	  on	  FT	  

NL-‐D	  

HA0-‐D	  

HA.5-‐D	  

HA1-‐D	  

IA-‐D	  

NL-‐C	  

HA0-‐C	  

HA.5-‐C	  

HA1-‐C	  

IA-‐C	  

1	  

1.2	  

1.4	  

1.6	  

1.8	  

2	  

2.2	  

2.4	  

2.6	  

2.8	  

3	  

16	   32	   64	   128	   256	  

Ru
n$

m
e	  
no

rm
al
iz
ed

	  to
	  "
em

pt
y"
	  ru

n	  

cores	  

Scalability	  of	  analysis	  on	  IS	  class	  C	  

NL-‐C	  

HA0-‐C	  

HA.5-‐C	  

HA1-‐C	  

IA-‐C	  

0.98	  

1.18	  

1.38	  

1.58	  

1.78	  

1.98	  

16	   32	   64	   128	   256	   512	   1024	   2048	  

Ru
n$

m
e	  
no

rm
al
iz
ed

	  to
	  "
em

pt
y"
	  ru

n	  

cores	  

Scalability	  of	  analysis	  on	  LU	  

NL-‐D	  

HA0-‐D	  

HA.5-‐D	  

IA-‐D	  

NL-‐C	  

HA0-‐C	  

HA.5-‐C	  

IA-‐C	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

8	  

9	  

16	   32	   64	   128	   256	   512	   1024	   2048	  

Ru
n$

m
e	  
no

rm
al
iz
ed

	  to
	  "
em

pt
y"
	  ru

n	  

cores	  

Scalability	  of	  analysis	  on	  MG	  

NL-‐D	  

HA0-‐D	  

HA.5-‐D	  

IA-‐D	  

NL-‐C	  

HA0-‐C	  

HA.5-‐C	  

IA-‐C	   1	  

1.05	  

1.1	  

1.15	  

1.2	  

1.25	  

1.3	  

1.35	  

1.4	  

1.45	  

16	   32	   64	   128	   256	   512	   1024	   2048	  

Ru
n$

m
e	  
no

rm
al
iz
ed

	  to
	  "
em

pt
y"
	  ru

n	  

cores	  

Scalability	  of	  analysis	  on	  SP	  

NL-‐D	  

HA0-‐D	  

HA.5-‐D	  

IA-‐D	  

NL-‐C	  

HA0-‐C	  

HA.5-‐C	  

IA-‐C	  

Figure 4. Scalability of the different sampling methods when running the tool on the NAS Parallel Benchmarks, classes C and D. The overhead of instruction
sampling I is high and it has been omitted for presentation purposes.

8 2012/8/17



presented in Section 4.1. Recently, Raman et al [37] describe a
scalable implementation for data race detection in Habanero Java
programs implemented using fine-grained structured parallelism.
Their benchmarks are equivalent to our fine-grained benchmarks,
while our NAS benchmarks use coarse grained interactions. They
report analysis overheads as high as 10X and provide valuable
data about the scalability of other state of the art race detectors
for multi-threaded programs: Eraser [39] and FastTrack [16]. They
report slowdowns as high as 100X for the latter.

So far there have been a lot of research effort to verify and test
concurrent and parallel programs written in Java and C/pthreads
for non-HPC platforms; the literature listed above supports this
fact. There have also been efforts to test and verify HPC pro-
grams, mostly focused on C/MPI programs. ISP [42] is a push-
button dynamic verifier capable of detecting deadlocks, resource
leaks, and assertion violations in C/MPI programs. DAMPI [44, 45]
overcomes ISP’s scalability limitations and scales to thousands of
MPI processes. Like ISP, DAMPI only tests for MPI Send/Recv
interleavings, but runs in a distributed way. In contrast to our
work, DAMPI instruments and reasons only about the ordering of
Send/Recv operations with respect to the MPI ranks, and not about
the memory accessed by these operations. Both ISP and DAMPI
assume that program input is fixed. TASS [40] removes this lim-
itation by using symbolic execution to reason about all possible
inputs to a MPI program, but it is work only at inception. MPI mes-
sages can be intercepted and analyzed for bugs and anomalies. Intel
MessageChecker [13] does a post-mortem analysis after collecting
message traces, while MARMOT [23] and Umpire [43] check at
runtime.

9. Conclusion
To our knowledge, we discuss the first implementation of a data
race detector for distributed memory programs that tracks all mem-
ory references. To this end, we extend the UPC-Thrille tool to mon-
itor, in addition to the communication operations, all memory ref-
erences in a UPC program. The goal of our implementation is to
provide low overhead with good program coverage when running
at scale.

Dynamic program analysis tools, as implemented in UPC-
Thrille, face the challenge of instrumentation overhead. UPC-
Thrille implements instruction sampling, while the state-of-the-art
technique to reduce overhead is considered to be function sampling.
We use a workload containing UPC programs and experiment with
function and instruction level sampling. Our results indicate that
function level sampling is not feasible for scientific programs: in-
creasing the input set increases the amount of work per function
invocation in these applications and the analysis does not termi-
nate. Instruction sampling works better for scientific programs and
our implementation finds races with up to 65X slowdown.

We propose two techniques to improve the scalability of data
race detection in UPC programs: ) hierarchical function and in-
struction level sampling; and 2) exploiting the runtime persistence
of aliasing and locality in UPC applications. The aliasing heuris-
tic is common to PGAS languages and the combination of the two
techniques is widely applicable to Chapel, Titanium, X10. Hierar-
chical sampling is a generic technique that is applicable orthog-
onal to the language, programming model or data race detection
algorithm. The results indicate that both techniques are required in
practice: well optimized instruction sampling introduces overheads
as high as 6500% (65X slowdown), while each technique in separa-
tion is able to reduce it to 1000% (10X slowdown). When applying
the optimizations in conjunction our tool finds races with at most
50% overhead when running on 2048 cores of a CrayXE6 system.

References
[1] S. Adve and K. Gharachorloo. Shared memory consistency models: a

tutorial. IEEE computing, December 1996.

[2] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detecting
data races on weak memory systems. In 18th International Symposium
on Computer architecture (ISCA), pages 234–243. ACM, 1991.

[3] M. Arnold and B. G. Ryder. A framework for reducing the cost
of instrumented code. In Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation,
PLDI ’01, 2001.

[4] M. Arnold, M. T. Vechev, and E. Yahav. Qvm: An efficient runtime
for detecting defects in deployed systems. ACM Trans. Softw. Eng.
Methodol., 21(1), 2011.

[5] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[6] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow. The NAS Parallel Benchmarks 2.0. Technical Report
NAS-95-010, NASA Ames Research Center, 1995.

[7] S. Bensalem and K. Havelund. Dynamic deadlock analysis of multi-
threaded programs. In Haifa Verification Conference, pages 208–223,
2005.

[8] D. Bonachea. Proposal for Extending the UPC Memory Copy Library
Functions and Supporting Extensions to GASNet. Technical Report
LBNL-56495, Lawrence Berkeley National Lab, October 2004.

[9] S. Burckhardt, R. Alur, and M. M. K. Martin. CheckFence: checking
consistency of concurrent data types on relaxed memory models. In
Programming Language Design and Implementation (PLDI), pages
12–21, 2007.

[10] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, and K. W. E.
Brooks. Introduction to UPC and language specification, 1999.

[11] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and precise datarace detection for multithreaded
object-oriented programs. In Programming language design and im-
plementation (PLDI), pages 258–269, New York, NY, USA, 2002.
ACM.

[12] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debugging
parallel programs with flowback analysis. ACM Trans. Program.
Lang. Syst., 13(4):491–530, 1991.

[13] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov, S. Zheltov, and
S. Bratanov. Automated, scalable debugging of MPI programs with
Intel Message Checker. In Software engineering for high performance
computing system applications, SE-HPCS ’05, pages 78–82, New
York, NY, USA, 2005. ACM.

[14] A. Dinning and E. Schonberg. Detecting access anomalies in pro-
grams with critical sections. In Workshop on Parallel and Distributed
Debugging, 1991.

[15] M. B. Dwyer, J. Hatcliff, Robby, and V. P. Ranganath. Exploiting
object escape and locking information in partial-order reductions for
concurrent object-oriented programs. Form. Methods Syst. Des., 25(2–
3):199–240, 2004.

[16] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dy-
namic race detection. In Programming language design and imple-
mentation (PLDI). ACM, 2009.

[17] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound and
complete dynamic atomicity checker for multithreaded programs. In
Programming language design and implementation (PLDI), pages
293–303. ACM, 2008.

[18] E. N. Hanson and T. Johnson. The interval skip list: A data structure
for finding all intervals that overlap a point. In Workshop on Algo-
rithms and Data Structures, pages 153–164. Springer, 1992.

[19] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detec-
tion using adaptive statistical profiling. In Proceedings of the 11th

9 2012/8/17



international conference on Architectural support for programming
languages and operating systems, ASPLOS-XI, 2004.

[20] P. Husbands, C. Iancu, and K. Yelick. A performance analysis of the
berkeley upc compiler. In Proceedings of the 17th annual interna-
tional conference on Supercomputing, ICS ’03, 2003.

[21] P. Joshi, M. Naik, C.-S. Park, and K. Sen. An extensible active testing
framework for concurrent programs. In Computer Aided Verification
(CAV), Lecture Notes in Computer Science. Springer, 2009.

[22] A. Kamil and K. Yelick. Hierarchical pointer analysis for distributed
programs. In The 14th International Static Analysis Symposium (SAS
2007, Kongens Lyngby, 2007.

[23] B. Krammer, M. Müller, and M. Resch. Runtime checking of MPI
applications with MARMOT. In Mini-Symposium Tools Support for
Parallel Programming, ParCo 2005, Malaga, Spain, September 12 -
16, 2005., 2005.

[24] W. Kuchera and C. Wallace. The UPC memory model: Problems
and prospects. In the 18th International Parallel and Distributed
Processing Symposium (IPDPS), April 2004.

[25] B. Liblit and A. Aiken. Type systems for distributed data structures.
In In the 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL, pages 199–213, 2000.

[26] B. Liblit, A. Aiken, and K. Yelick. Type systems for distributed data
sharing. In In International Static Analysis Symposium. SpringerVer-
lag, 2001.

[27] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity vio-
lations via access interleaving invariants. SIGARCH Comput. Archit.
News, 34(5):37–48, 2006.

[28] D. Marino, M. Musuvathi, and S. Narayanasamy. Literace: effective
sampling for lightweight data-race detection. In PLDI, 2009.

[29] J. Mellor-Crummey. On-the-fly detection of data races for programs
with nested fork-join parallelism. In Supercomputing, pages 24–33.
ACM, 1991.

[30] M. Naik, A. Aiken, and J. Whaley. Effective static race detection
for Java. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 308–319, 2006.

[31] The NAS Parallel Benchmarks. Available at
http://www.nas.nasa.gov/Software/NPB.

[32] The UPC NAS Parallel Benchmarks. Available at
http://upc.gwu.edu/download.html.

[33] R. H. B. Netzer and B. P. Miller. What are race conditions? some
issues and formalizations. LOPLAS, 1992.

[34] S. Olivier and J. Prins. Scalable dynamic load balancing using UPC.
In International Conference on Parallel Processing (ICPP), ICPP ’08,
2008.

[35] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu. Efficient Data Race
Detection for Distributed Memory Parallel Programs. In Proceedings
of the Supercomputing Conference (SC11), 2011.

[36] S. Qadeer and D. Wu. KISS: keep it simple and sequential. In
Programming language design and implementation (PLDI), pages 14–
24. ACM, 2004.

[37] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Scalable and
Precise Dynamic Datarace Detection for Structured Parallelism. In
Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), PLDI ’12, 2012.

[38] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and J. Torrellas. Accurate
and efficient filtering for the intel thread checker race detector. In
Proceedings of the 1st workshop on Architectural and system support
for improving software dependability, ASID ’06, 2006.

[39] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data race detector for multithreaded programs. ACM
Trans. Comput. Syst., 15(4):391–411, 1997.

[40] S. F. Siegel and T. K. Zirkel. Automatic formal verification of MPI-
based parallel programs. In Principles and practice of parallel pro-
gramming, PPoPP ’11, pages 309–310, New York, NY, USA, 2011.
ACM.

[41] C. Terboven. Comparing intel thread checker and sun thread analyzer.
In PARCO’07, pages 669–676, 2007.

[42] S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and R. M. Kirby.
ISP: a tool for model checking MPI programs. In Principles and
practice of parallel programming, PPoPP ’08, pages 285–286, New
York, NY, USA, 2008. ACM.

[43] J. S. Vetter and B. R. de Supinski. Dynamic software testing of MPI
applications with Umpire. In Supercomputing, SC ’00, Washington,
DC, USA, 2000. IEEE Computer Society.

[44] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R. d. Supinski,
M. Schulz, and G. Bronevetsky. A scalable and distributed dynamic
formal verifier for MPI programs. In Supercomputing, SC ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[45] A. Vo, G. Gopalakrishnan, R. M. Kirby, B. R. de Supinski, M. Schulz,
and G. Bronevetsky. Large scale verification of mpi programs us-
ing lamport clocks with lazy update. In Proceedings of the 2011
International Conference on Parallel Architectures and Compilation
Techniques, PACT ’11, pages 330–339, Washington, DC, USA, 2011.
IEEE Computer Society.

[46] C. von Praun and T. R. Gross. Object race detection. In Object ori-
ented programming, systems, languages, and applications (OOPSLA),
pages 70–82. ACM, 2001.

[47] M. Xu, R. Bodı́k, and M. D. Hill. A serializability violation detector
for shared-memory server programs. SIGPLAN Not., 40(6):1–14,
2005.

[48] K. Yelick, D. Bonachea, and C. Wallace. A Proposal for a UPC Mem-
ory Consistency Model. Technical Report LBNL-54983, Lawrence
Berkeley National Laboratory, May 2004.

10 2012/8/17


